

Collaborators:
Paolo Grigolini
Mirek Latka
Elliott Montroll
Jonas Salk

A Medical Tale of Tails: Applications and Implications of Inverse Power Laws in Primary Care Research

at

Primary Care Research Methods \& Statistics Conference

San Antonio, TX
January 22, 2010

Bruce J. West

Mathematical \& Information
Sciences Directorate
Army Research Office
Research Triangle Park, NC

Some things we will discuss

- Physical and Physiological laws involve averages
 mean dominates
fluctuations are normal central limit theorem
- Complexity implies inverse power law
- examples from social, physical and life sciences

- Inverse power laws imply fractal phenomena
- geometrical
- statistical scaling

Historically complexity was modeled using statistics

-Gauss

- simple processes; twinkle twinkle little star
- permeated social and life science of $\mathbf{1 9}^{\text {th }}$ century
- bell-shaped distribution
- lead to 'average man’
- Pareto
- complex processes; solar flares and sun spots
- gained traction in last half of $20^{\text {th }}$ century
- inverse power-law distribution
- vital few

Normal (Gauss) world view

- Linear

- simple rules yield simple results
- things are additive
- output is proportional to input
- predictable
- normal distribution

- Every student knows its true; but where is the evidence?

Averages \& rates represent phenomena

- heart rate
- stride rate

- breathing rate

How do we know this is true?

FRACTAL PHYSIOLOGY

James B. Bassingthwaighte Larry S. Liebovitch Bruce J. West

Data source

- University entrance examination of Universidade Estadual Paulista (UNESP) in state of Sao Paulo, Brazil: Gupta, Campanha \& Chavorette, Int. J. Mod. Phys. 2004
- data for approximately 60,000 students graduating high school and taking entrance examination

Humanities

day \& night students (2000)

private \& public students (2000)

high \& low income (2000)

Gauss was right!

Not necessarily Gauss

H. Poincaré (1854-1912):
"All the world believes it firmly, because the mathematicians
believe it is a fact of observation and the observers believe it is a
theorem of mathematics."

So we look at more data!

Physical Sciences

day \& night students (2000)

private \& public students (2000)

high \& low income students (2000)

Not bell-shaped!

Biological Sciences

day \& night students (2000)

high \& low income students (2000)

private \& public students (2000)

Not bell-shaped either !

What happened to Gauss?

- Humanities consists of many disjoint subjects:
- history, language, philosophy, social studies and so on
- satisfies condition for the normal (Gauss) distribution
- Physical sciences are based on sequential interdependent studies:
- elementary science
- basic mathematics through algebra and trigonometry
- calculus
- physics
- chemistry
- Biological sciences are also based on sequential interdependent studies
- Interdependence and memory are complex, violating the conditions for Gauss distribution.

Inverse power-law distribution replaces Gauss!

Pareto's Law

Vilfredo Pareto, Cours d'Economie Politique (1896).

Income distribution in United States ('14-'33)

Income is a complex process

Lotka's Laws

Alfred J. Lotka,
Elements of Mathematical Biology (1924)

- de Solla Price

Little Science, Big Science (1963)

$$
P(x) \propto \frac{1}{x^{3}}
$$

- 96\% of all scientists publish less than the average
- Are you average?

Number of citations

Publishing papers is a complex process

40 ‘NATURAL’ INVERSE POWER-LAW NETWORKS

- sand pile avalanches
- fracture of materials
- brush-fire damage
- flooding of Nile
- laser technology evolution
- hurricanes and floods
- earthquakes
- power system blackouts
- coastlines
- magma rising through earth's crust
- punctuated equilibrium
- asteroid hits
- mass extinctions/explosions
- sun spots
- galactic structure
- frequency of DNA base chemicals
- genetic circuitry
- protein-protein interactions
- metabolism of cells
- neural network branching
- cellular substructures
- magnitude estimate of sensorial stimuli
- circulation in plants and animals
- phytoplankton
- number vs. size of plant genera
- brain functioning
- tumor growth
- fetal lamb breathing
- bronchial structure
- heartbeats
- predicting premature births
- functional networks in brain
- density-dependent regulation of plants
- species abundance
- biodiversity
- body size of species
- epidemics
- predators food source
- size distribution in ecosystems
- mass extinctions

40 'SOCIAL' INVERSE POWER-LAW NETWORKS

- language - word usage
- social networks
- blockbuster drugs
- sexual networks
- distribution of wealth
- citations
- co-authorship
- casualties of war
- growth rate of GDPs
- delinquency rates
- movie profits
- actor networks
- size of villages
- distribution of family names
- consumer products
- copies of books sold
- number of telephone calls and emails
- deaths of languages
- aggressive behavior among children
- structure of internet equipment
- internet links
- \# hits website/day
- price movements on exchanges
- economic fluctuations
- salaries
- labor strikes
- job vacancies
- firm sizes
- growth rates of firms
- growth rates of internal structure
- supply chains
- cotton prices
- alliances among biotech firms
- entrepreneurship/innovation
- director interlock structure
- Italian industrial clusters
- global terrorism events
- intra-firm decision events

Pareto World View

- Nonlinear
- simple rules yield complex results
- small changes may diverge
- limited predictability
- inverse power-law distributions

- Almost no one knows its true.

It's not what you expected!

- Inverse power laws are strange:
- most workers earn less money than average
- most investigators publish fewer papers than average
- most scientists are cited fewer times than average
- most speakers use fewer words than average
- most people live is larger cities than average
- most EW patients stay in hospitals less time than average
- most damage is caused by fewer failures than average
- The average never characterizes a complex phenomenon.

No Average? Then What?

- The slope replaces the average as the metric
- slope measures the extent of imbalance
- slope measures the degree of 'unfairness'
- slope measures degree of variability
- slope gives fractal dimension
- Disease is not the loss of regularity but the loss of complexity

- Simple scientific world view
- linear; output is proportional to input
- additive
- simple rules yield simple results
- stable
- predictable
- quantitative
- normal distribution
- Complex scientific world view
- nonlinear; small changes may diverge
- multiplicative
- simple rules yield complex results
- unstable
- limited predictability
- qualitative plus quantitative
- inverse power-law distributions

Complexity \square Pareto \Rightarrow Fractal

- So how do fractals change our interpretations of things in the real world?
- Statistical fractal phenomena are very often described by inverse power laws.
- Fractals imply scaling.

```
Buce. . West
Nauro Bolonn Mauro Bolgena
Paolo Grigoini
Physics of Fractal
Operators
```

6: manc

Self-similar structure and self-similar dynamics

Geometrical Fractal

Tree-like

- self-similar branching
- structure repeats itself on all levels of the hierarchy
- magnify branches at each level
- branches, within branches, within branches

$$
X(\lambda t)=\lambda^{\alpha} X(t)
$$

Statistical Fractal
Time series

- Heart rate regulation
- fluctuations are self-similar in a statistical way
- clumps, within clumps, within clumps

$$
p(x, t)=\frac{1}{t^{\delta}} p\left(\frac{x}{t^{\delta}}\right)
$$

Pathological Breakdown of fractal dynamics

Healthy dynamics $\quad 1.1 \leq D \leq 1.3$

- Healthy heart rate
- multiple scales
- long-range order
- fractal time series
(A.L. Goldberger,

Lancet 347, 1312, 1996)

- Correlation index

$$
r=2^{3-2 D}-1
$$

Single scale - heart failure

$$
D \approx 1.0
$$

Uncorrelated randomness - atrial fibrillation

$$
D \approx 1.5
$$

Taylor's Law, data and time series correlations

- Power curve

$$
\operatorname{Var} X(m)=a \bar{X}^{b}(m)
$$

- b > 1 clumped;
- $b<1$ even;
$-b=1$ random
- Fractal dimension
- $D=2-b / 2$
- Correlation coefficient

$$
r=2^{3-2 D}-1
$$

$$
\begin{aligned}
& r=0 \text { uncorrelated } \quad \longrightarrow D=1.5 \\
& r=1 \text { regular } \quad \longrightarrow D=1.0
\end{aligned}
$$

$$
D=2-H
$$

Arterial blood pressure variability

temperature variability

Heart \& breathing rate variability, HRV \& BRV

Stride rate variability, SRV

peak number

Gastric rate variability GRV

Conclusions

- Complex phenomena are described by the statistics of Pareto not Gauss.
- Scaling properties indicate an underlying fractal

2004 behavior, either in the geometrical structure or in the statistics.

- Scaling of complex phenomena imply that scaling indices, not averages, better characterize the process.
- Most physiologic phenomena are complex and described by inverse power laws, so that the average is truly exceptional.
- Disease is loss of variability and not the loss of regularity.

